非开挖水平定向钻群管穿越回拖力研究

相关文件下载

目前非开挖水平定向钻广泛应用于电力电缆线路工程穿越天然或人工的障碍物,工程应用中在需要一次成孔后敷设多根电缆保护管,文章定义为群管回拖穿越。群管穿越以其优异的经济及环保优势在工程中大量应用,但目前规范只给出了塑料管单管回拖力的计算方法。文章旨在研究电力电缆线路工程中群管一次回拖的回拖力计算方法。

方法

以珠三角某220 kV电缆线路工程为依托,该工程在同一地点采用非开挖水平定向钻两次穿越国家一级水道,穿越地层大部分为可塑粘土层,工程实施前采用塑料管单管回拖力计算方法进行理论计算,实施过程中现场实测回拖力变化情况,获得回拖力变化曲线。

结果

理论计算与实测结果对比分析表明:在可塑粘土地层条件下,实测群管回拖力是相同重量与包络径单管规范计算回拖力的4~6倍。管材直线回拖对于减小回拖力及实施风险非常关键。

结论

非开挖水平定向钻穿越工程中群管回拖的概念及回拖力计算参考值,为以后类似工程穿越设计,施工提供参考。

关键词

回拖力; 群管穿越; 水平定向钻; 现场实测

OA:https://www.energychina.press/

1964年,美国Martin研制出第一台水平定向钻机[1],1985年,水平定向钻技术首次引入中国的管道穿越工程。自此后,水平定向钻技术应用越来越广泛[2]。非开挖水平定向钻技术应用于电力电缆线路工程中主要敷设改性聚丙烯电缆导管(MPP管)或者高密度聚乙烯管(HDPE管)。电缆工程中使用非开挖水平定向钻技术在穿越轨迹上一次成孔后,一回路三相电缆需要回拖7根甚至更多的MPP管,在工程实践过程中有大量的成功实例,本文定义为群管回拖。而目前针对管道回拖过程中的钢管回拖力估算主要依据《油气输送管道穿越工程设计规范》(GB 50423—2013)[3]、塑料管的回拖力计算主要依据《水平定向钻法管道穿越工程技术规程》(CECS 382—2014)[4],两规范给出的均是单管回拖的回拖力估算方法。《城镇燃气管道穿跨越工程技术规程》(CJJ/T 250—2016)[5]提出穿越长度大于300 m时,宜采用钢管穿越,对以HDPE管为主的塑料管穿越长度进行了限制,但实际塑料管单管穿越工程应用中,一些工程水平定向钻采用塑料管穿越长度大于500 m以上且运行良好[6]。

群管回拖作为一项电缆线路工程非开挖水平定向钻穿越过程中常用技术,应用已经非常广泛。但群管穿越回拖的理论支撑还不够完善,目前没有专业的规范进行明确。基于以上原因,本文对群管穿越条件下回拖力估算问题进行探讨,通过研究单管回拖力计算方法,对比现场实测回拖力数据,得出可以基于工程经验及应用的群管穿越回拖力估算方法及推荐穿越长度,群管回拖横断面如图1所示。

img

图1 群管回拖横断面图

Fig.1 Cross section of multiple pipelines pullback

1 规范回拖力计算方法

在工程实践中,水平定向钻实施的理想状态是管道在成孔完好的施工孔洞的泥浆中回拖,管道回拖力为净浮力与施工孔洞孔壁产生的摩擦力。单管穿越时,在无水平方向弯曲的钻孔中,其典型轨迹由曲线段-直线段-曲线段组成,如图2所示。

img

图2 典型钻孔轨迹示意图

Fig.2 Schematic diagram of typical borehole trajectory

《水平定向钻法管道穿越工程技术规程》(CECS 382—2014)给出了该轨迹下单管回拖力的计算公式,如图2所示。

TA=efgβfgwp(L1+L2+L3+L4)TA=efgβfgwp(L1+L2+L3+L4)
TB=efhβ(TA+fh|wf|L2+wfH−fgωpL2efgβ)TB=efhβ(TA+fhwfL2+wfH-fgωpL2efgβ)
TC=TB+fh|wf|L3−efhβ(fgωpL3efgβ)TC=TB+fhwfL3-efhβ(fgωpL3efgβ)
TD=efhα[TC+fh|wf|L4−wfH−efhβ(fgωpL4efgβ)]TD=efhα[TC+fhwfL4-wfH-efhβ(fgωpL4efgβ)]

式中:

TATA ——A处管道所受回拖力(kN);

TBTB ——B处管道所受回拖力(kN);

TCTC ——C处管道所受回拖力(kN);

TDTD ——D处管道所受回拖力(kN);

L1L1 ——图中管段水平长度(m);

L2L2 ——图中管段水平长度(m);

L3L3 ——图中管段水平长度(m);

L4L4 ——图中管段水平长度(m);

fgfg ——塑料管道与地面之间的摩擦系数,可取0.5;

fhfh ——塑料管道与孔壁之间的摩擦系数,可取0.3;

wpwp ——单位长度管道重力(kN/m);

wfwf ——单位长度管道所受净浮力(kN/m);

αα ——入土角(rad);

ββ ——出土角(rad)。

该回拖力的估算方法主要参考美国材料试验学会ASTM计算法[7],该方法全面考虑了管道在地面的摩擦力,在孔洞中净浮力产生的摩擦力,回拖过程弯曲段的绞盘效应等多种因素,不考虑管径、钻杆、管材前面的回扩头、连接装置等因素[8]。

其理论成立的前提是:回拖过程中管道被视为不具抗弯刚度的柔性体,施工孔形状和穿越曲线理想,施工孔洞孔壁稳定性非常好,没有塌孔现象[9-10]。

2 工程实际回拖力对比分析

珠三角某220 kV电缆线路工程,穿越国家一级航道采用非开挖水平定向钻法敷设MPP管方式穿越,穿越路径长度393 m,深度29 m,需要实施Ⅰ、Ⅱ两个电缆通道,每个通道敷设4根Φ355×30+5根Φ110×10MPP管,每个通道具体敷设断面如图3。

img

图3 敷设管道横断面图

Fig.3 Cross section of laying pipeline

根据MPP管《非开挖用改性聚丙烯塑料电缆导管》(DL/T 802.7—2010)关于管材抗拉强度的规定,MPP管的管材抗拉强度为25 MPa,熔接位置抗拉强度为22.5 MPa,本工程所有管材抗拉强度设计值如表1。

表1 管材抗拉强度设计值

Tab.1 Design value of tensile strength of pipe

管材规格 单根抗拉设计值 数量 总抗拉设计值
D355×30 689.16 kN 4 3.110 MN
D110×10 70.65 kN 5

该工程穿越的主要地层为人工回填层、流塑的淤泥层,可塑的黏土层,饱和的粗砂层。西岸有地基处理的素混凝土桩需要避让,所以穿越深度达到了29 m,水平穿越段主要在可塑黏土层(层厚约6 m)中穿越,穿越地质情况良好,管道摆放位于西岸的A位置,回拖钻机位于东岸D位置,扩孔完成后,电缆保护群管从A向D点回拖,纵断面图及地质条件见图4。

img

图4 工程非开挖水平定向钻纵剖面图

Fig.4 Longitudinal section of trenchless horizontal directional drilling of the project

按本文上述章节及《水平定向钻法管道穿越工程技术规程》(CECS 382—2014)给出的计算方法,按4根Φ355×30+5根Φ110×10MPP管回拖力计算结果如表2,其中最大回拖力出现在C位置,计算得最大回拖力TC为503.27 kN,按规范要求管材抗拉强度满足2的安全系数,经过计算本工程所选管材的抗拉强度安全系数为6.18。

表2 回拖力计算结果表

Tab.2 Calculation results of pullback force ( kN )

TA TB TC TD
349.40 457.14 503.27 467.54

本工程实施过程中,采用江苏徐工XZ3000钻机,最大推拉力3 MN。采用九级扩孔到1 200 mm施工孔洞,回拖管道前连续两次24 h洗孔。在实施过程中,对工程实施过程中两条通道回拖力进行实时监测。取得完整实测数据且与规范计算值对比如图5。

img

图5 回拖力实测曲线

Fig.5 Measured curve of pullback force

水平定向钻路径长度为393 m,考虑到管材前端钻杆连接,实际监测回拖力钻杆44条,纵曲线长度大约420 m。

根据上图的实测数据,I通道最大回拖力为2.9 MN,Ⅱ通道的最大回拖力为2 MN。本工程最先实施I通道,因为在该施工场地施工无施工经验,施工场地准备不足,在地面上熔接好的420 m管材摆放出现了90°转弯等问题,导致实施了3天4夜全部管道才回拖成功,回拖力较大。

Ⅱ通道为本工程实施的最后一个通道,前期已经积累了Ⅰ通道的施工经验,并对施工过程进行了大量的优化,进行了地面交通道路占用及疏导,临时占用了部分实现在地面上熔接好的420 m管材全部直线摆放,最终经过6个小时施工,所有管道全部回拖完毕,实施过程非常理想。两通道管材摆放方式对比如图6。

img

图6 两通道管材摆放方式对比图

Fig.6 Comparison of pipe placement methods

通过实测结果与规范计算结果进行对比,在群管回拖过程中,实测结果均明显大于计算结果。在理想状态下,Ⅱ通道回拖力大约为计算结果的4倍,在非理想状态下,I通道回拖力达到了计算结果的6倍,已经接近管材抗拉强度设计值,实施过程风险非常大,所以对于水平距离超过400 m的群管穿越工程,需要仔细核算回拖力的安全系数。

计算结果和实测均在管道回拖至图2的C位置时开始出现最大回拖力。

本文分析原因如下:

1)规范计算方法仅考虑单根塑料管道的受力情况,主要考虑单根塑料管的加拖拉力,外形是按表面光滑的包络圆计算,而群管为一束管,横断面图如图7所示,形状不规则,且4大5小群管表面积约为包络圆表面积的2.3倍。且回拖过程中,群管管材的排列远没有图7中整齐规范,容易出现扭转,错动。导致群管回拖过程中摩擦力远远大于同重量的包络圆单管。

img

图7 群管包络圆示意图

Fig.7 Schematic diagram of multiple pipelines envelope circle

2)规范计算时,回拖过程中管道被视为不具抗弯刚度的柔性体,施工孔形状和穿越曲线理想,施工孔洞孔壁稳定性非常好,没有塌孔现象。但实际工程中,施工孔形状、穿越曲线非常难做到理想状况,甚至局部会出现塌孔等现象,所以实测回拖力远远大于理论计算值。

3)水平定向钻施工中,熔接好的大长度管材摆放场地严重制约实施的可行性,Ⅰ、Ⅲ通道实施时,熔接好的420 m管材是90°转弯摆放,实施起来非常艰难。Ⅱ通道熔接好的管材采用直线摆放,各方面实施条件最好。

4)规范计算仅考虑了管材的受力情况,没有计算钻杆、回扩头,钻杆与管道连接装置等产生的回拖力情况。

3 结 论

通过本文的研究,得出以下结论:

1)《水平定向钻法管道穿越工程技术规程》(CECS 382—2014)塑料管加拖力计算方法不考虑管径、钻杆、管材前面的回扩头、连接装置、塌孔现象等因素。但工程实际实施过程中,群管因为表面积约为同重量同包络圆表面积的2.3倍,且实施过程中容易出现扭转、错动、局部发生塌孔。导致群管回拖过程中摩擦力远远大于同重量的包络圆单管。本文工程实例中实测回拖力为规范计算回拖力值的4~6倍。

2)对于MPP或者HDPE管等塑料管,群管回拖力的大小直接影响工程实施的可行性,本工程实测回拖力已经接近管材抗拉强度设计值。因此平面路径长度超过400 m的穿越工程,需要仔细核算回拖力的安全系数。

3)长距离非开挖水平定向钻敷设电缆保护群管的成功实施,需要施工成孔质量、管道准备的密切配合。

4)群管管材回拖前,管材准备工作及摆放方式至关重要。所有管材连接好后,直线摆管是理想的管材摆放方式,特别是对于长距离非开挖水平定向钻穿越方式的成功非常关键。